
DIGITAL ELECTRONICS

 | MREC(A)

MODULE-III:

Combinational Logic Circuits

Combinational Logic Design

Logic circuits for digital systems may be combinational or sequential. The output of a
combinational circuit depends on its present inputs only .Combinational circuit processing
operation fully specified logically by a set of Boolean functions .A combinational circuit consists of
input variables, logic gates and output variables.Both input and output data are represented by
signals, i.e., they exists in two possible values. One is logic –1 and the other logic 0.

For n input variables,there are 2n possible combinations of binary input variables
.For each possible input Combination ,there is one and only one possible output
combination.A combinational circuit can be described by m Boolean functions one for
each output variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1. The problem is stated
2. The number of available input variables and required output variables is
determined. 3.The input and output variables are assigned letter symbols.
4.The truth table that defines the required relationship between inputs and outputs is derived.
5.The simplified Boolean function for each output is obtained.
6.The logic diagram is drawn.

DIGITAL ELECTRONICS

 | MREC(A)

Adders:

Digital computers perform variety of information processing tasks,the one is
arithmetic operations.And the most basic arithmetic operation is the addition of
two binary digits.i.e, 4 basic possible operations are:

0+0=0,0+1=1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and
addend bits are equal to 1,the binary sum consists of two digits.The higher significant bit
of this result is called a carry.A combinational circuit that performs the addition of two bits
is called a half-adder. One that performs the addition of 3 bits (two significant bits &
previous carry) is called a full adder.& 2 half adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs
(augends and addend bits and two binary outputs (sum and carry bits.) It adds the
two inputs (A and B) and produces the sum (S) and the carry (C) bits. It is an
arithmetic operation of addition of two single bit words.

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the
sum (S) is the X-OR of A and B (It represents the LSB of the sum). Therefore,

S=A + B=

The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1).Therefore,

C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

Logic diagrams of half-adder

DIGITAL ELECTRONICS

 | MREC(A)

NAND LOGIC:

NOR Logic:

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and
outputs a sum bit and a carry bit. To add two binary numbers, each having two or more
bits, the LSBs can be added by using a half-adder. The carry resulted from the addition
of the LSBs is carried over to the next significant column and added to the two bits in
that column. So, in the second and higher columns, the two data bits of that column
and the carry bit generated from the addition in the previous column need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the carry-
in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S gives the
value of the least significant bit of the sum. The variable Cout gives the output carry.The

DIGITAL ELECTRONICS

 | MREC(A)

eight rows under the input variables designate all possible combinations of 1s and 0s
that these variables may have. The 1s and 0s for the output variables are determined
from the arithmetic sum of the input bits. When all the bits are 0s , the output is 0. The
S output is equal to 1 when only 1 input is equal to 1 or when all the inputs are equal to
1. The Cout has a carry of 1 if two or three inputs are equal to 1.

From the truth table, a circuit that will produce the correct sum and carry bits in
response to every possible combination of A,B and Cin is described by

S ABCin ABCin ABCin ABCin
Cout ABCin ABCin ABCin ABCin

and
S A B Cin

Cout ACin BCin AB

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the
modulo sum of the data bits in that column and the carry from the previous
column. The logic diagram of the full-adder using two X-OR gates and two AND
gates (i.e, Two half adders) and one OR gate is

DIGITAL ELECTRONICS

 | MREC(A)

Even though a full-adder can be constructed using two half-adders, the disadvantage
is that the bits must propagate through several gates in accession, which makes the
total propagation delay greater than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only
NAND gates or only NOR gates as

NAND Logic:

DIGITAL ELECTRONICS

 | MREC(A)

NOR Logic:

Subtractors:

The subtraction of two binary numbers may be accomplished by taking the
complement of the subtrahend and adding it to the minuend. By this, the subtraction
operation becomes an addition operation and instead of having a separate circuit for
subtraction, the adder itself can be used to perform subtraction. This results in reduction
of hardware. In subtraction, each subtrahend bit of the number is subtracted from its
corresponding significant minuend bit to form a difference bit. If the minuend bit is smaller
than the subtrahend bit, a 1 is borrowed from the next significant position., that has been
borrowed must be conveyed to the next higher pair of bits by means of a signal coming out
(output) of a given stage and going into (input) the next higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from
the other and produces the difference. It also has an output to specify if a 1 has
been borrowed. . It is used to subtract the LSB of the subtrahend from the LSB of
the minuend when one binary number is subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two
outputs d and b. d indicates the difference and b is the output signal generated that
informs the next stage that a 1 has been borrowed. When a bit B is subtracted from
another bit A, a difference bit (d) and a borrow bit (b) result according to the rules given as

DIGITAL ELECTRONICS

 | MREC(A)

The output borrow b is a 0 as long as A≥B. It is a 1 for A=0 and B=1. The d output is
the result of the arithmetic operation 2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every
possible combination of the two 1-bit numbers is , therefore ,

d=A + B= and b= B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is
obtained by ANDing the complement of the minuend with the subtrahend.Note that
logic for this exactly the same as the logic for output S in the half-adder.

A half-substractor can also be realized using universal logic either using only
NAND gates or using NOR gates as:

NAND Logic:

NOR Logic:

DIGITAL ELECTRONICS

 | MREC(A)

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow during
the subtraction of the LSBs, it affects the subtraction in the next higher column; the subtrahend bit
is subtracted from the minuend bit, considering the borrow from that column used for the
subtraction in the preceding column. Such a subtraction is performed by a full-subtractor. It
subtracts one bit (B) from another bit (A) , when already there is a borrow bi from this column for the
subtraction in the preceding column, and outputs the difference bit (d) and the borrow bit(b)
required from the next d and b. The two outputs present the difference and output borrow. The 1s
and 0s for the output variables are determined from the subtraction of A-B-bi.

From the truth table, a circuit that will produce the correct difference and borrow
bits in response to every possiblecombinations of A,B and bi is

A full-subtractor can be realized using X-OR gates and AOI gates as

DIGITAL ELECTRONICS

 | MREC(A)

The full subtractor can also be realized using universal logic either using only
NAND gates or using NOR gates as:

NAND Logic:

NOR Logic:

DIGITAL ELECTRONICS

 | MREC(A)

Binary Parallel Adder:

A binary parallel adder is a digital circuit that adds two binary numbers in
parallel form and produces the arithmetic sum of those numbers in parallel form. It
consists of full adders connected in a chain , with the output carry from each full-
adder connected to the input carry of the next full-adder in the chain.

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The
augends bits of A and addend bits of B are designated by subscript numbers from right to left, with
subscript 1 denoting the lower –order bit. The carries are connected in a chain through the full-
adders. The input carry to the adder is Cin and the output carry is C4. The S output generates the
required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has four
terminals for the augends bits, four terminals for the addend bits, four terminals for the sum bits,
and two terminals for the input and output carries. AN n-bit parallel adder requires n-full adders. It
can be constructed from 4-bit, 2-bit and 1-bit full adder ICs by cascading several packages. The
output carry from one package must be connected to the input carry of the one with the next higher
–order bits. The 4-bit full adder is a typical example of an MSI function.

Ripple carry adder:

In the parallel adder, the carry –out of each stage is connected to the carry-in of the
next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after the
carry-in of that stage occurs. This is due to the propagation delays in the logic circuitry,

DIGITAL ELECTRONICS

 | MREC(A)

which lead to a time delay in the addition process. The carry propagation delay for each full-
adder is the time between the application of the carry-in and the occurrence of the carry-out.

The 4-bit parallel adder, the sum (S1) and carry-out (C1) bits given by FA1 are not valid,
until after the propagation delay of FA1. Similarly, the sum S2 and carry-out (C2) bits
given by FA2 are not valid until after the cumulative propagation delay of two full
adders (FA1 and FA2) , and so on. At each stage ,the sum bit is not valid until after the
carry bits in all the preceding stages are valid. Carry bits must propagate or ripple
through all stages before the most significant sum bit is valid. Thus, the total sum (the
parallel output) is not valid until after the cumulative delay of all the adders.

The parallel adder in which the carry-out of each full-adder is the carry-in to the next
most significant adder is called a ripple carry adder.. The greater the number of bits
that a ripple carry adder must add, the greater the time required for it to perform a valid
addition. If two numbers are added such that no carries occur between stages, then
the add time is simply the propagation time through a single full-adder.

4- Bit Parallel Subtractor:

The subtraction of binary numbers can be carried out most conveniently by means of

complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding it to A
. The 2‘s complement can be obtained by taking the 1‘s complement and adding 1 to the least

significant pair of bits. The 1‘s complement can be implemented with inverters as

Binary-Adder Subtractor:

A 4-bit adder-subtractor, the addition and subtraction operations are combined into
one circuit with one common binary adder. This is done by including an X-OR gate with each
full-adder. The mode input M controls the operation. When M=0, the circuit is an adder, and
when M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the
inputs of B. When M=0, .The full-adder receives the value of B , the input carry is 0

DIGITAL ELECTRONICS

 | MREC(A)

and the circuit performs A+B. when and C1=1. The B inputs are
complemented and a 1 is through the input carry. The circuit performs the
operation A plus the 2‘s complement of B.

The Look-Ahead –Carry Adder:

In parallel-adder,the speed with which an addition can be performed is
governed by the time required for the carries to propagate or ripple through all of
the stages of the adder. The look-ahead carry adder speeds up the process by
eliminating this ripple carry delay. It examines all the input bits simultaneously and
also generates the carry-in bits for all the stages simultaneously.

The method of speeding up the addition process is based on the two additional
functions of the full-adder, called the carry generate and carry propagate functions.

Consider one full adder stage; say the nth stage of a parallel adder as
shown in fig. we know that is made by two half adders and that the half adder contains
an X-OR gate to produce the sum and an AND gate to produce the carry. If both the bits
An and Bn are 1s, a carry has to be generated in this stage regardless of whether the
input carry Cin is a 0 or a 1. This is called generated carry, expressed as Gn= An.Bn
which has to appear at the output through the OR gate as shown in fig.

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder

at the input produces an intermediary sum bit- call it Pn –which is expressed as
Next Pn and Cn are added using the X-OR gate inside the second half adder to produce the

.

final

DIGITAL ELECTRONICS

 | MREC(A)

sum bit and

and output carryC0= Pn.Cn=(

)Cn

which

becomes carry for the (n+1) th stage.

Consider the case of both Pn and Cn being 1. The input carry Cn has to be
propagated to the output only if Pn is 1. If Pn is 0, even if Cn is 1, the and gate in the
second half-adder will inhibit Cn . the carry out of the nth stage is 1 when either
Gn=1 or Pn.Cn =1 or both Gn and Pn.Cn are equal to 1.

For the final sum and carry outputs of the nth stage, we get the following Boolean
expressions.

Observe the recursive nature of the expression for the output
carry at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to
express the output carry of a higher significant stage is the carry-out of the previous stage.

Based on these , the expression for the carry-outs of various full adders are as follows,

Observe that the final output carry is expressed as a
function of the input variables in SOP form. Which is two level AND-OR or equivalent
NAND-NAND form. Observe that the full look-ahead scheme requires the use of OR
gate with (n+1) inputs and AND gates with number of inputs varying from 2 to (n+1).

DIGITAL ELECTRONICS

 | MREC(A)

2’s complement Addition and Subtraction using Parallel Adders:

Most modern computers use the 2‘s complement system to represent negative numbers
and to perform subtraction operations of signed numbers can be performed using only the
addition operation ,if we use the 2‘s complement form to represent negative numbers.

The circuit shown can perform both addition and subtraction in the 2‘s
complement. This adder/subtractor circuit is controlled by the control signal
ADD/SUB‘. When the ADD/SUB‘ level is HIGH, the circuit performs the addition of the
numbers stored in registers A and B. When the ADD/Sub‘ level is LOW, the circuit
subtract the number in register B from the number in register A. The operation is:

When ADD/SUB‘ is a 1:

1. AND gates 1,3,5 and 7 are enabled , allowing B0,B1,B2and B3 to pass to the
OR gates 9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking
B0‘,B1‘,B2‘, and B3‘ from reaching the OR gates 9,10,11 and 12.

2. The two levels B0 to B3 pass through the OR gates to the 4-bit parallel adder,

to be added to the bits A0 to A3. The sum appears at the output S0 to S3

3. Add/SUB‘ =1 causes no carry into the adder.

When ADD/SUB‘ is a 0:

1. AND gates 1,3,5 and 7 are disabled , allowing B0,B1,B2and B3 from reaching
the OR gates 9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking
B0‘,B1‘,B2‘, and B3‘ from reaching the OR gates.

DIGITAL ELECTRONICS

 | MREC(A)

2. The two levels B0‘ to B3‘ pass through the OR gates to the 4-bit parallel
adder, to be added to the bits A0 to A3.The C0 is now 1.thus the number in
register B is converted to its 2‘s complement form.

3. The difference appears at the output S0 to S3.

Adders/Subtractors used for adding and subtracting signed binary numbers. In
computers , the output is transferred into the register A (accumulator) so that the
result of the addition or subtraction always end up stored in the register A This is
accomplished by applying a transfer pulse to the CLK inputs of register A.

Serial Adder:

A serial adder is used to add binary numbers in serial form. The two binary numbers to
be added serially are stored in two shift registers A and B. Bits are added one pair at a time
through a single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to
a D flip-flop. The output of this flip-flop is then used as the carry input for the next pair of
significant bits. The sum bit from the S output of the full-adder could be transferred to a third
shift register. By shifting the sum into A while the bits of A are shifted out, it is possible to use
one register for storing both augend and the sum bits. The serial input register B can be used to
transfer a new binary number while the addend bits are shifted out during the addition.

The operation of the serial adder is:

Initially register A holds the augend, register B holds the addend and the carry flip-flop
is cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at
x and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both
registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A , and
the output carry is transferred into flip-flop Q . The shift control enables the registers for a
number of clock pulses equal to the number of bits of the registers. For each succeeding clock
pulse a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are
shifted once to the right. This process continues until the shift control is disabled. Thus the
addition is accomplished by passing each pair of bits together with the previous carry through
a single full adder circuit and transferring the sum, one bit at a time, into register A.

DIGITAL ELECTRONICS

 | MREC(A)

Initially, register A and the carry flip-flop are cleared to 0 and then the first number
is added from B. While B is shifted through the full adder, a second number is transferred
to it through its serial input. The second number is then added to the content of register A
while a third number is transferred serially into register B. This can be repeated to form the
addition of two, three, or more numbers and accumulate their sum in register A.

Difference between Serial and Parallel Adders:

The parallel adder registers with parallel load, whereas the serial adder uses shift
registers. The number of full adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serial adder requires only one full adder circuit
and a carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit,
whereas the serial adder is a sequential circuit. The sequential circuit in the serial adder
consists of a full-adder and a flip-flop that stores the output carry.

BCD Adder:

The BCD addition process:

1. Add the 4-bit BCD code groups for each decimal digit position using
ordinary binary addition.

2. For those positions where the sum is 9 or less, the sum is in proper BCD

form and no correction is needed.

3. When the sum of two digits is greater than 9, a correction of 0110 should
be added to that sum, to produce the proper BCD result. This will
produce a carry to be added to the next decimal position.

A BCD adder circuit must be able to operate in accordance with the above steps.
In other words, the circuit must be able to do the following:

1. Add two 4-bit BCD code groups, using straight binaryaddition.

DIGITAL ELECTRONICS

 | MREC(A)

2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if it is , add
0110 (decimal 6) to this sum and generate a carry to the next decimalposition.

The first requirement is easily met by using a 4- bit binary parallel adder such

as the 74LS83 IC .For example , if the two BCD code groups A3A2A1A0and B3B2B1B0
are applied to a 4-bit parallel adder, the adder will output S4S3S2S1S0 , where S4 is
actually C4 , the carry –out of the MSB bits.

The sum outputs S4S3S2S1S0 can range anywhere from 00000 to 100109when
both the BCD code groups are 1001=9). The circuitry for a BCD adder must include the
logic needed to detect whenever the sum is greater than 01001, so that the correction
can be added in. Those cases , where the sum is greater than 1001 are listed as:

Let us define a logic output X that will go HIGH only when the sum is greater
than 01001 (i.e, for the cases in table). If examine these cases ,see that X will be
HIGH for either of the following conditions:

1. Whenever S4 =1(sum greater than 15)

2. Whenever S3 =1 and either S2 or S1 or both are 1 (sum

10 to 15) This condition can be expressed as

X=S4+S3(S2+S1)

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to
generate a carry. The circuit consists of three basic parts. The two BCD code groups A3A2A1A0
and B3B2B1B0 are added together in the upper 4-bit adder, to produce the sum S4S3S2S1S0. The
logic gates shown implement the expression for X. The lower 4-bit adder will add the correction
0110 to the sum bits, only when X=1, producing the final BCD sum output represented by
∑3∑2∑1∑0. The X is also the carry-out that is produced when the sum is greater than 01001.
When X=0, there is no carry and no addition of 0110. In such cases, ∑3∑2∑1∑0= S3S2S1S0.

DIGITAL ELECTRONICS

 | MREC(A)

Two or more BCD adders can be connected in cascade when two or more
digit decimal numbers are to be added. The carry-out of the first BCD adder is
connected as the carry-in of the second BCD adder, the carry-out of the second
BCD adder is connected as the carry-in of the third BCD adder and so on.

EXCESS-3(XS-3) ADDER:

To perform Excess-3 additions,

1. Add two xs-3 code groups
2. If carry=1, add 0011(3) to the sum of those two code groups

If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two
code groups.
Ex: Add 9 and 5
 1100 9 in Xs-3
 +1000 5 in xs-3
 _ _

1 0100 there is a carry
+0011 0011 add 3 to each group

0100 0111 14 in xs-3
(1) (4)

EX:

Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (A3
A2A1A0) and addend (B3B2B1B0) in xs-3 are added using the 4-bit parallel adder. If the carry is a
1, then 0011(3) is added to the sum bits S3S2S1S0 of the upper adder in the lower 4-bit parallel

DIGITAL ELECTRONICS

 | MREC(A)

adder. If the carry is a 0, then 1101(3) is added to the sum bits (This is equivalent
to subtracting 0011(3) from the sum bits. The correct sum in xs-3 is obtained

Excess-3 (XS-3) Subtractor:
To perform Excess-3 subtraction,

1. Complement the subtrahend
2. Add the complemented subtrahend to the minuend.
3. If carry =1, result is positive. Add 3 and end around carry to the result . If carry=0,

the result is negative. Subtract 3, i.e, and take the 1‘s complement of the result.

Ex: Perform 9-4
 1100 9 in xs-3
 +1000 Complement of 4 n Xs-3

(1) 0100 There is a carry
 +0011 Add 0011(3)

0111

1 End around carry

1000 5 in xs-3

The minuend and the 1‘s complement of the subtrahend in xs-3 are added in the upper
4-bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum
bits of the upper adder in the lower adder and the sum bits of the lower adder are
complemented to get the result. If the carry-out from the upper adder is a 1, then 3=0011 is
added to the sum bits of the lower adder and the sum bits of the lower adder give the result.

Binary Multipliers:

In binary multiplication by the paper and pencil method, is modified somewhat
in digital machines because a binary adder can add only two binary numbers at a time.
In a binary multiplier, instead of adding all the partial products at the end, they are
added two at a time and their sum accumulated in a register (the accumulator register).
In addition, when the multiplier bit is a 0,0s are not written down and added because it
does not affect the final result. Instead, the multiplicand is shifted left by one bit.

The multiplication of 1110 by 1001 using this process is
Multiplicand 1110
Multiplier 1001
 1110 The LSB of the multiplier is a 1; write down the
 multiplicand; shift the multiplicand one position to the left
 (11100)
 1110 The second multiplier bit is a 0; write down the previous
 result 1110; shift the multiplicand to the left again (1 1 1 0
 0 0)

DIGITAL ELECTRONICS

 | MREC(A)

0000 The fourth multiplier bit is a 1 write down the new multiplicand add it to the first
partial product to obtain the final product.
1111110

This multiplication process can be performed by the serial multiplier circuit ,
which multiplies two 4-bit numbers to produce an 8-bit product. The circuit
consists of following elements
X register: A 4-bit shift register that stores the multiplier --- it will shift right on the
falling edge of the clock. Note that 0s are shifted in from the left.
B register: An 8-bit register that stores the multiplicand; it will shift left on the
falling edge of the clock. Note that 0s are shifted in from the right.
A register: An 8-bit register, i.e, the accumulator that accumulates the partial products.
Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder
outputs S7 through S0 are connected to the D inputs of the accumulator so that the sum
can be transferred to the accumulator only when a clock pulse gets through the AND gate.
The circuit operation can be described by going through each step in the
multiplication of 1110 by 1001. The complete process requires 4 clock cycles.
1. Before the first clock pulse: Prior to the occurrence of the first clock pulse, the
register A is loaded with 00000000, the register B with the multiplicand 00001110,
and the register X with the multiplier 1001. Assume that each of these registers is
loaded using its asynchronous inputs(i.e., PRESET and CLEAR). The output of the
adder will be the sum of A and B,i.e., 00001110.
2. First Clock pulse:Since the LSB of the multiplier (X0) is a 1, the first clock pulse gets
through the AND gate and its positive going transition transfers the sum outputs into
the accumulator. The subsequent negative going transition causes the X and B
registers to shift right and left, respectively. This produces a new sum of A and B.
3. Second Clock Pulse: The second bit of the original multiplier is now in X0 . Since
this bit is a 0, the second clock pulse is inhibited from reaching the accumulator.
Thus, the sum outputs are not transferred into the accumulator and the number in
the accumulator does not change. The negative going transition of the clock pulse
will again shift the X and B registers. Again a new sum is produced.
4. Third Clock Pulse:The third bit of the original multiplier is now in X0;since this bit
is a 0, the third clock pulse is inhibited from reaching the accumulator. Thus, the
sum outputs are not transferred into the accumulator and the number in the
accumulator does not change. The negative going transition of the clock pulse will
again shift the X and B registers. Again a new sum is produced.
5. Fourth Clock Pulse: The last bit of the original multiplier is now in X0 , and since it is a 1, the
positive going transition of the fourth pulse transfers the sum into the accumulator. The
accumulator now holds the final product. The negative going transition of the clock pulse shifts
X and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out.

Code converters:

The availability of a large variety of codes for the same discrete elements of information
results in the use of different codes by different digital systems. It is sometimes necessary to use
the output of one system as the input to another. A conversion circuit must be inserted between the
two systems if each uses different codes for the same information. Thus a

DIGITAL ELECTRONICS

 | MREC(A)

code converter is a logic circuit whose inputs are bit patterns representing numbers
(or character) in one cod and whose outputs are the corresponding representation in a
different code. Code converters are usually multiple output circuits.

To convert from binary code A to binary code B, the input lines must
supply the bit combination of elements as specified by code A and the output lines
must generate the corresponding bit combination of code B. A combinational
circuit performs this transformation by means of logic gates.
For example, a binary –to-gray code converter has four binary input lines B4, B3,B2,B1 and
four gray code output lines G4,G3,G2,G1. When the input is 0010, for instance, the output
should be 0011 and so forth. To design a code converter, we use a code table treating it as
a truth table to express each output as a Boolean algebraic function of all the inputs.

In this example, of binary –to-gray code conversion, we can treat the
binary to the gray code table as four truth tables to derive expressions for G4, G3,
G2, and G1. Each of these four expressions would, in general, contain all the four
input variables B4, B3,B2,and B1. Thus,this code converter is actually equivalent to
four logic circuits, one for each of the truth tables.

The logic expression derived for the code converter can be simplified using the
usual techniques, including ‗don‘t cares‘ if present. Even if the input is an unweighted code,
the same cell numbering method which we used earlier can be used, but the cell numbers --
must correspond to the input combinations as if they were an 8-4-2-1 weighted code. s
Design of a 4-bit binary to gray code converter:

DIGITAL ELECTRONICS

 | MREC(A)

Design of a 4-bit gray to Binary code converter:

DIGITAL ELECTRONICS

 | MREC(A)

Design of a 4-bit BCD to XS-3 code converter:

DIGITAL ELECTRONICS

 | MREC(A)

Design of a BCD to gray code converter:

Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code
Input:

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211
BCD code input:

DIGITAL ELECTRONICS

 | MREC(A)

Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number:

Comparators:

DIGITAL ELECTRONICS

 | MREC(A)

1. Magnitude Comparator:

1- bit Magnitude Comparator:

DIGITAL ELECTRONICS

 | MREC(A)

4- Bit Magnitude Comparator:

DIGITAL ELECTRONICS

 | MREC(A)

IC Comparator:

ENCODERS:

Octal to Binary Encoder:

DIGITAL ELECTRONICS

 | MREC(A)

Decimal to BCD Encoder:

Tristate bus system:

In three-state, tri-state, or 3-statelogic allows an output port to assume a high
impedance state in addition to the 0 and 1 logic levels, effectively removing the
output from the circuit.

This allows multiple circuits to share the same output line or lines (such as a bus
which cannot listen to more than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the
7400 and 4000 series as well as in other types, but also internally in many integrated
circuits. Other typical uses are internal and external buses in microprocessors, computer
memory, and peripherals. Many devices are controlled by an active-low input called OE
(Output Enable) which dictates whether the outputs should be held in a high-impedance
state or drive their respective loads (to either 0- or 1-level).

